30 research outputs found

    MixUp as Locally Linear Out-Of-Manifold Regularization

    Full text link
    MixUp is a recently proposed data-augmentation scheme, which linearly interpolates a random pair of training examples and correspondingly the one-hot representations of their labels. Training deep neural networks with such additional data is shown capable of significantly improving the predictive accuracy of the current art. The power of MixUp, however, is primarily established empirically and its working and effectiveness have not been explained in any depth. In this paper, we develop an understanding for MixUp as a form of "out-of-manifold regularization", which imposes certain "local linearity" constraints on the model's input space beyond the data manifold. This analysis enables us to identify a limitation of MixUp, which we call "manifold intrusion". In a nutshell, manifold intrusion in MixUp is a form of under-fitting resulting from conflicts between the synthetic labels of the mixed-up examples and the labels of original training data. Such a phenomenon usually happens when the parameters controlling the generation of mixing policies are not sufficiently fine-tuned on the training data. To address this issue, we propose a novel adaptive version of MixUp, where the mixing policies are automatically learned from the data using an additional network and objective function designed to avoid manifold intrusion. The proposed regularizer, AdaMixUp, is empirically evaluated on several benchmark datasets. Extensive experiments demonstrate that AdaMixUp improves upon MixUp when applied to the current art of deep classification models.Comment: Accepted by AAAI201

    Code-Style In-Context Learning for Knowledge-Based Question Answering

    Full text link
    Current methods for Knowledge-Based Question Answering (KBQA) usually rely on complex training techniques and model frameworks, leading to many limitations in practical applications. Recently, the emergence of In-Context Learning (ICL) capabilities in Large Language Models (LLMs) provides a simple and training-free semantic parsing paradigm for KBQA: Given a small number of questions and their labeled logical forms as demo examples, LLMs can understand the task intent and generate the logic form for a new question. However, current powerful LLMs have little exposure to logic forms during pre-training, resulting in a high format error rate. To solve this problem, we propose a code-style in-context learning method for KBQA, which converts the generation process of unfamiliar logical form into the more familiar code generation process for LLMs. Experimental results on three mainstream datasets show that our method dramatically mitigated the formatting error problem in generating logic forms while realizing a new SOTA on WebQSP, GrailQA, and GraphQ under the few-shot setting.Comment: work in progres

    Narrowing the Gap between Supervised and Unsupervised Sentence Representation Learning with Large Language Model

    Full text link
    Sentence Representation Learning (SRL) is a fundamental task in Natural Language Processing (NLP), with Contrastive learning of Sentence Embeddings (CSE) as the mainstream technique due to its superior performance. An intriguing phenomenon in CSE is the significant performance gap between supervised and unsupervised methods, even when their sentence encoder and loss function are the same. Previous works attribute this performance gap to differences in two representation properties (alignment and uniformity). However, alignment and uniformity only measure the results, which means they cannot answer "What happens during the training process that leads to the performance gap?" and "How can the performance gap be narrowed?". In this paper, we conduct empirical experiments to answer these "What" and "How" questions. We first answer the "What" question by thoroughly comparing the behavior of supervised and unsupervised CSE during their respective training processes. From the comparison, We observe a significant difference in fitting difficulty. Thus, we introduce a metric, called Fitting Difficulty Increment (FDI), to measure the fitting difficulty gap between the evaluation dataset and the held-out training dataset, and use the metric to answer the "What" question. Then, based on the insights gained from the "What" question, we tackle the "How" question by increasing the fitting difficulty of the training dataset. We achieve this by leveraging the In-Context Learning (ICL) capability of the Large Language Model (LLM) to generate data that simulates complex patterns. By utilizing the hierarchical patterns in the LLM-generated data, we effectively narrow the gap between supervised and unsupervised CSE.Comment: work in progres
    corecore